Assessment of Automated Snow Cover Detection at High Solar Zenith Angles with PROBA-V
نویسندگان
چکیده
Changes in the snow cover extent are both a cause and a consequence of climate change. Optical remote sensing with heliosynchronous satellites currently provides snow cover data at high spatial resolution with daily revisiting time. However, high latitude image acquisition is limited because reflective sensors of many satellites are switched off at high solar zenith angles (SZA) due to lower signal quality. In this study, the relevance and reliability of high SZA acquisition are objectively quantified in the purpose of high latitude snow cover detection, thanks to the PROBA-V (Project for On-Board Autonomy-Vegetation) satellite. A snow cover extent classification based on Normalized Difference Snow Index (NDSI) and Normalized Difference Vegetation Index (NDVI) has been performed for the northern hemisphere on latitudes between 55◦N and 75◦N during the 2015–2016 winter season. A stratified probabilistic sampling was used to estimate the classification accuracy. The latter has been evaluated among eight SZA intervals to determine the maximum usable angle. The global overall snow classification accuracy with PROBA-V, 82% ± 4%, was significantly larger than the MODIS (Moderate-resolution Imaging Spectroradiometer) snow cover extent product (75% ± 4%). User and producer accuracy of snow are above standards and overall accuracy is stable until 88.5◦ SZA. These results demonstrate that optical remote sensing data can still be used with large SZA. Considering the relevance of snow cover mapping for ecology and climatology, the data acquisition at high solar zenith angles should be continued by PROBA-V.
منابع مشابه
The effect of anisotropic reflectance on imaging spectroscopy of snow properties
How does snow’s anisotropic directional reflectance affect the mapping of snow properties from imaging spectrometer data? This sensitivity study applies two spectroscopy models to synthetic images of the spectral hemispherical–directional reflectance factor (HDRF) with prescribed snow-covered area and snow grain size. The MEMSCAG model determines both sub-pixel snow-covered area and the grain s...
متن کاملDistribution and Validation of Cloud Cover Derived from AVHRR Data Over the Arctic Ocean During the SHEBA Year
Determination of cloud radiation interactions over large areas of the Arctic is possible only with the use of data from polar orbiting satellites. Cloud detection using satellite data is difficult in the Arctic due to the minimal contrast between clouds and the underlying snow surface in visible and infrared wavelengths. Polar clouds are frequently warmer or at the same brightness temperature a...
متن کاملSpectral bidirectional reflectance of Antarctic snow: Measurements and parameterization
[1] The bidirectional reflectance distribution function (BRDF) of snow was measured from a 32-m tower at Dome C, at latitude 75 S on the East Antarctic Plateau. These measurements were made at 96 solar zenith angles between 51 and 87 and cover wavelengths 350–2400 nm, with 3to 30-nm resolution, over the full range of viewing geometry. The BRDF at 900 nm had previously been measured at the South...
متن کاملModelling and measuring the spectral bidirectional reflectance factor of snow-covered sea ice: an intercomparison study
Broadband albedo is a very important geophysical parameter in the Earth surface–atmosphere interaction in either global climate change or hydrological cycle and snowmelt runoff studies. To derive the broadband albedo accurately from satellite optical sensor observation at limited bands and at a single observation angle, the bidirectional reflectance factor (BRF) has to be specified quantitative...
متن کاملMODIS snow albedo bias at high solar zenith angles relative to theory and to in situ observations in Greenland
In situ measurements of snow albedo at five stations along a north-south transect in the dry-snow facies of the interior of Greenland follow the theoretically expected dependence of snow albedo with solar zenith angles (SZA). Greenland Climate Network (GC-Net) measurements from 1997 through 2007 exhibit the trend of modest surface brightening with increasing SZA on both diurnal and seasonal tim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016